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I. REVIEW

Last time we:
(1) Calculated ramification points and indices in an example
(2) Defined the local normal form and degree of a morphism
(3) Started defining hyperelliptic curves

II. WHAT IS A BRANCH OF A MULTI-VALUED FUNCTION?

Let U be an open subset of C and suppose f : U → C is a surjective, holomorphic
function. Since f is surjective, then it has a right inverse, i.e., there exists a function
g : f (U) → U such that f ◦ g = id f (U). There are many such g: to define one, for each
w ∈ f (U), simply choose some z ∈ f−1(w) and set g(w) = z. However, choosing this
z so haphazardly means that g is very unlikely to be continuous, or have any other nice
properties. And really we want much more: we’d like g to be holomorphic.

But even if we try to define g carefully, it will almost always have points of discon-
tinuity. For instance, consider f (z) = z3 with g(w) = 3

√
w. [Show visualization at

https://openprocessing.org/sketch/1083105.] With the definition we just showed,
g is discontinuous along the positive real axis. So we can define 3

√
w continuously on

C \ [0, ∞), but not on any larger set.
So by restricting the domain of the right inverse g, we can obtain a continuous function.

In general, given a domain D ⊆ f (U), a branch of f−1 on D is a continuous function
g : D → U such that f ◦ g = idD. Given such a g, we can even say something about its
differentiability.

Theorem 1. Suppose f : U → C is holomorphic and g is a branch of f−1 on a domain D ⊆
f (U). Fix z0 ∈ D and let w0 = g(z0). If f ′(w0) 6= 0, then g is differentiable at z0 and
g′(z0) = 1/ f ′(w0).
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Reexamining the visualization, notice if we go around the origin three times, we do
return to the value that we started with. So if we take three copies of C, cut each of
them along the real axis and then glue them together along these cuts, we can define a
global cube root function g : C → X, where X is the resulting surface. We can write X as
{(w, z) ∈ C2 : z3 = w} and the function z on X “is” the cube root function g, now defined
and holomorphic on all of X.

I think this is historically why Riemann defined Riemann surfaces. And more com-
plicated multi-valued functions lead us to familiar examples: if we consider g(x) =√

x3 − 1, the corresponding Riemann surface is the affine elliptic curve E : y2 = x3 − 1.

III. HYPERELLIPTIC CURVES

Given an affine elliptic curve y2 = x3 + Ax + B living inside the affine plane A2, we
can easily find its closure in P2 simply by homogenizing the defining polynomial. Let’s
try to generalize this to what are known as hyperelliptic curves. Let C : y2 = x5 − 1 be an
affine plane curve; let’s try to determine its closure in P2 the same way. Is the resulting
projective curve smooth?

While there are methods to resolve singularities, a more natural construction is the
following. To define hyperelliptic curves, we need a weighted variant of the projective
plane, whose definition we sketch below.

Definition 2. Given g ∈ Z≥1 define the weighted projective plane

P(1, g + 1, 1) :=
C3 \ {(0, 0, 0)}

∼
where (X, Y, Z) ∼ (λX, λg+1Y, λZ) for all λ ∈ C×.

Remark 3. One can similarly define P(a, b, c), however there is some strange behavior
gcd(a, b, c) 6= 1. Note that P(1, 1, 1) = P2.

Just as with the usual projective plane, we have distinguished affine opens U0, U1, U2,
where X, Y, and Z are nonzero, respectively. However, the weights come into play when
defining the standard open sets. We define

U0 → A2

[X : Y : Z] =
[

1 :
Y

Xg+1 :
Z
X

]
7→
(

Y
Xg+1 ,

Z
X

)
U2 → A2

[X : Y : Z] =
[

X
Z

:
Y

Zg+1 : 1
]
7→
(

X
Z

,
Y

Zg+1

)
.

Note the conspicuous absence of a map for U1! One can define a map on U1 similarly
to the above, but it actually won’t be an isomorphism with A2, but rather the quotient
A2/µg+1 of A2 by the cyclic group of (g + 1)st roots of unity.

However, note that U0 ∪U2 covers all of P(1, g + 1, 1) except for the single point [0 :
1 : 0] where X = Z = 0. It turns out that this point will never lie on our models of
hyperelliptic curves, so we can safely ignore it.
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Definition 4. A hyperelliptic curve over C is a smooth plane curve in P(1, g + 1, 1) given
by an equation of the form

Y2 + h(X, Z)Y = f (X, Z)

(called a Weierstrass equation) where f , h ∈ C[X, Z] are homogeneous of degree 2g + 2 and
g + 1, respectively.

Remark 5. Consider F := Y2 + h(X, Z)Y − f (X, Z) ∈ C[X, Y, Z], if we assign X and Z
weight 1 and Y weight g + 1, then F is weighted homogeneous of degree 2g + 2.

Since C has characteristic 0, we can complete the square and obtain a short Weierstrass
equation:

Y2 = f (X, Z) .

Proposition 6. Let C : Y2 = F(X, Z) be a hyperelliptic curve, so on the open subset U2 where
Z 6= 0, C is given by y2 = f (x), where f (x) = F(x, 1).

(a) The map ι : (x, y) 7→ (x,−y) extends to an involution (i.e., a morphism such that ι2 = id)
defined on all of C. (This is called the hyperelliptic involution.)

(b) The map

π : C → P1

[X : Y : Z] 7→ [X : Z]

is a degree 2 morphism that is ramified above the roots of f , and if f has odd degree, also at
the point [1 : 0 : 0].

Proof. We first consider π on U2, where it is given by (x, y) 7→ x, where x = X/Z and
y = Y/Zg+1. Given Q = x0 ∈ A1, then π−1(Q) consists of the points (x0, y0), where y0 is
a solution of the equation

y2 = f (x0) .

There are two such solutions, counted with multiplicity, so π has degree 2. By constancy
of degree,

2 = deg(π) = ∑
P∈π−1(Q)

eP(π)

so the ramification values of π are exactly the x0 such that there is only one solution y0.
This occurs exactly when f (x0) = 0, i.e., x0 is a root of f .

If f has odd degree, then the weighted homogenization F has a factor of Z. (For in-
stance, if the affine equation for the curve is y2 = f (x) with f (x) = x5 − 1, then the
weighted homogenized equation is Y2 = X5Z− Z6.) Letting Q = [1 : 0] = π([1 : 0 : 0]),
then we compute π−1(Q) by subsituting X = 1, Z = 0 into the equation for C, obtaining
Y2 = 0. Thus π−1(Q) consists of only one point, hence π is ramified at [1 : 0 : 0]. �

IV. DIFFERENTIALS

Some of the notation for defining differentials can be a bit cumbersome, so let’s begin
with an example to fix ideas.
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Example 7. Let’s define a differential on P1. Writing [X0 : X1] for the homogeneous
coordinates on P1, recall that we have a holomorphic atlas consisting of the open sets
U0 = {X0 6= 0} and U1 = {X1 6= 0} with coordinate maps

ϕ0 : U0
∼→ C

[X0 : X1] = [1 : X1/X0] 7→ X1/X0

ϕ1 : U1
∼→ C

[X0 : X1] = [X0/X1 : 1] 7→ X0/X1 .

Denote the coordinates on the images of ϕ0 and ϕ1 by z0 and z1, respectively. Consider
the differential on dz1 on img(ϕ1) = C. Even if you don’t know a rigorous definition for
dz1, you probably know what it is: something we can integrate. (People with background
in differential topology will probably say something about covector fields, but it basically
amounts to the same thing.) So we have a differential on one chart of P1: let’s see if it
extends to all of P1. Let’s work heuristically first. On U0 ∩U1 we have z1 = 1/z0, so we
should have

dz1 = d(1/z0) = −
1
z2

0
dz0

which gives us the expression for dz1 or U0. More rigorously, on U0 ∩U1 z1 and z0 are
related by the transition function ϕ1 ◦ ϕ−1

0 . We have z1 = (ϕ1 ◦ ϕ−1
0 )(z0) which sends

z0
ϕ−1

07−→ [1 : z0] = [1/z0 : 1]
ϕ17−→ 1/z0

so we find
dz1 = (ϕ1 ◦ ϕ−1

0 )′(z0) dz0 .

Definition 8. Given charts (Ui, ϕi), (Uj, ϕj) on a Riemann surface, and P ∈ Ui ∩Uj denote
the deriviate of their transition function at P by

dzi

dzj
(P) :=

(
ϕi ◦ ϕ−1

j

)′
(ϕj(P)) .

Definition 9. A meromorphic differential (one-form) ω on a Riemann surface X consists of
an open cover {Ui}i of X and a collection of meromorphic functions { fi : Ui → C}i such
that

f j = fi
dzi

dzj

on Ui ∩Uj for all i, j. If the fi are holomorphic for all i, then ω is called holomorphic.
We denote the set of all meromorphic differentials on X by M1(X), and the set of

holomorphic differentials by Ω(X) or O1(X).

Remark 10. We often write this ω|Ui = fi dzi and express the compatibility condition by
fi dzi = f j dzj.

Remark 11. For differential geometers, a differential is a section of the cotangent bundle.
Our definition is really the same thing. What we’ve done is specify an invertible sheaf,
which is often called a line bundle, by specifying its transition functions.
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Definition 12.
• Let X be a Riemann surface with an atlas {Ui}i where the local coordinate on Ui is

zi. Given a meromorphic function f ∈ M(X), define
∂ f
∂zi

(P) := ( f ◦ ϕ−1
i )′(ϕi(P)) .

• Given a meromorphic function f ∈ M(X), define the meromorphic differential d f

to be the collection
{

∂ f
∂zi

}
i
. We often express this by writing d f |Ui =

∂ f
∂zi

dzi.

Note that given a meromorphic differential ω on X and a meromorphic function f ∈
M(X), then f ω is again a meromorphic differential, so M1(X) is a vector space over
M(X).

Proposition 13. Given meromorphic differentials ω1, ω2 ∈ M1(X), then there exists a mero-
morphic function h ∈ M(X) such that ω1 = h ω2. ThusM1(X) is 1-dimensional as a vector
space overM(X).

Proof. The idea is to define h as ω1/ω2. More precisely, given an atlas {Ui}i of X, then for
each i we have ω1 = f 1

i dzi and ω2 = f 2
i dzi for some f 1

i , f 2
i ∈ M(Ui). So given P ∈ Ui,

define

h(P) :=
f 1
i (P)

f 2
i (P)

.

It remains to show that this is well-defined. If Uj is another chart with P ∈ Uj, then

f 1
j = f 1

i
dzi

dzj
and f 2

j = f 2
i

dzi

dzj
, so

f 1
j (P)

f 2
j (P)

=
f 1
i (P) dzi

dzj
(P)

f 2
i (P) dzi

dzj
(P)

=
f 1
i (P)

f 2
i (P)

.

Thus the definition of h(P) is independent of the choice of chart, so h is well-defined. �

Definition 14. Let ω ∈ M1(X) be a meromorphic differential on X and write ω = fi dzi
with respect to some holomorphic atlas {Ui}i. A point P ∈ X is a zero or pole of ω if it is
a zero or pole of fi, where P ∈ Ui. In this case we define the order of vanishing of ω at P as
ordP(ω) := ordP( fi).

Example 15 (P1 has no nonzero holomorphic differentials). As we have seen, letting
z = X1/X0, the differential dz has a double pole at infinity. We can use this observation
to show that there are no holomorphic differentials of P1. By the above, any differential
ω can be written as ω = f (z) dz for some f ∈ M(P1). Recall that every nonconstant
meromorphic function has at least one pole. In order for f (z) dz to be holomorphic every-
where, then f must be constant. But in order for f (z) dz to be holomorphic at ∞, f must
also have a zero of order ≥ 2 at ∞. The only way this can occur is if f is the constant zero
function, so ω = 0.
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